This work proposes to evaluate the effect of digital filters when applied to images acquired by the ORANGE prototype of the Cygno experiment. A preliminary analysis is presented in order to understand if filtering techniques can produce results that justify investing efforts in the pre-processing stage of those images. Such images come from a camera sensor based on CMOS technology installed in an appropriate gas detector. To perform the proposed work, a simulation environment was created and used to evaluate some of the classical filtering techniques known in the literature. The results showed that the signal-to-noise ratio of the images can be considerably improved, which may help in subsequent processing steps such as clustering and particles identification.

Study of the Impact of Pre-processing Applied to Images Acquired by the Cygno Experiment / Lopes, G. S. P.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Cavoto, G.; Costa, I. A.; Di Marco, E.; Maccarrone, G.; Marafini, M.; Mazzitelli, G.; Messina, A.; Nobrega, R. A.; Piccolo, D.; Pinci, D.; Renga, F.; Rosatelli, F.; Souza, D. M.; Tomassini, S.. - (2019), pp. 520-530. - LECTURE NOTES IN ARTIFICIAL INTELLIGENCE. [10.1007/978-3-030-31321-0_45].

Study of the Impact of Pre-processing Applied to Images Acquired by the Cygno Experiment

Bellini F.
Membro del Collaboration Group
;
Cavoto G.
Membro del Collaboration Group
;
Messina A.
Membro del Collaboration Group
;
2019

Abstract

This work proposes to evaluate the effect of digital filters when applied to images acquired by the ORANGE prototype of the Cygno experiment. A preliminary analysis is presented in order to understand if filtering techniques can produce results that justify investing efforts in the pre-processing stage of those images. Such images come from a camera sensor based on CMOS technology installed in an appropriate gas detector. To perform the proposed work, a simulation environment was created and used to evaluate some of the classical filtering techniques known in the literature. The results showed that the signal-to-noise ratio of the images can be considerably improved, which may help in subsequent processing steps such as clustering and particles identification.
2019
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Digital filters; Image processing; Particle physics experiment
02 Pubblicazione su volume::02a Capitolo o Articolo
Study of the Impact of Pre-processing Applied to Images Acquired by the Cygno Experiment / Lopes, G. S. P.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Cavoto, G.; Costa, I. A.; Di Marco, E.; Maccarrone, G.; Marafini, M.; Mazzitelli, G.; Messina, A.; Nobrega, R. A.; Piccolo, D.; Pinci, D.; Renga, F.; Rosatelli, F.; Souza, D. M.; Tomassini, S.. - (2019), pp. 520-530. - LECTURE NOTES IN ARTIFICIAL INTELLIGENCE. [10.1007/978-3-030-31321-0_45].
File allegati a questo prodotto
File Dimensione Formato  
Cavoto_Study of the Impact_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.09 MB
Formato Adobe PDF
10.09 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1624456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact